Carlson's Elliptic Integral RG
Let $x$, $y$ be non-negative real numbers and $z$ any real number, this calculator evaluates Carlson's elliptic integral $R_G$: \[ R_G(x,y,z)=\frac{1}{4\pi}\int_0^{2\pi}\int_0^\pi \sqrt{(x\sin^2\theta\cos^2\phi+y\sin^2\theta\sin^2\phi+z\cos^2\theta)}\sin\theta d\theta d\phi \]