Inverse of Error Function
Let $p$ be a positive real number and $0 < p < 1$, this calculator evaluates the following two functions.
- The inverse of error function $\mathrm{erf}^{-1}(p)$, i.e. find $x=\mathrm{erf}^{-1}(p)$ such that $\displaystyle p=\mathrm{erf}(x)=\frac{2}{\sqrt{\pi}}\int_0^x\mathrm{e}^{-t^2}\;dt$
- The inverse of complement of error function, i.e. find $x$ such that $p=1-\mathrm{erf}(x)$