Laguerre and Associated Laguerre Polynomials
Let $n,m$ be non-negative integers and $x$ a real number, this application evaluates the Laguerre polynomial of order $n$ at $x$ \[ L_n(x) = \frac{\mathrm{e}^x}{n!}\frac{d^n}{dx^n}(x^n\mathrm{e}^{-x}), \] and the associated Laguerre polynomial of degree $n$ and order $m$ \[ L_n^m(x)=(-1)^m\frac{d^m}{dx^m}L_{n+m}(x). \]