Nonlinear Least Squares
Given $m$ pairs of data $(t_1,y_1),\ldots,(t_m,y_m)$ and let $y=f(\mathbf{p},t)$ be the model function of independent variable $t$ and parameters $\mathbf{p}=(p_1,\ldots,p_n)$, where $n\leqslant m$, this application finds $\mathbf{p}$ such that the model function best fit to the data in the sense of least squares, minimizing $\sum_{i=1}^m r_i^2$, where $r_i=y_i-f(\mathbf{p},t_i)$ for $i=1,\ldots,m$.
For example, assume that we have a model function $y=\exp(-p_1t)/(p_2+p_3t)$ and from an experiment we get data of $y$ and $t$ as below:
y t 92.9000 0.5000 78.7000 0.6250 64.2000 0.7500 64.9000 0.8750 57.1000 1.0000The calculator uses these data and the model function to find $p_1,p_2,p_3$.
Input Data
-
The input for model function $f(p_1,\ldots,p_n,t)$, the calculator requires $x$ represent both $p$
and $t$ as below:
x1 represent p1 x2 represent p2 ... xn represent pn x(n+1) represent t
i.e. the last $x_{n+1}$ represents $t$. So from the model function above, $\exp(-p_1t)/(p_2+p_3t)$, the data input isexp(-x1*x4)/(x2+x3*x4)
- For the data $(y,t)$, enter $y$ in the first column and the corresponding $t$ in the second, one pair of data per line.
- Initial values of $p_1,\ldots,p_n$ can be entered by a user. If no data is provided, the calculator set them randomly in the interval $(0,1)$.
The data used as the example in this application is available from Ultrasonic Reference Block Study